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Abstract. The adoption of a recommender system depends mostly on the accu-
racy of the computation of the rating predictions from the users. The user rating
prediction accuracy has been a main topic in recent research. Collaborative filter-
ing is one of themost prevalent algorithms for rating prediction,where ratings from
close users, Near Neighbours, are used for the prediction of item ratings. For the
collaborating filtering algorithm implementation, researchers utilise a large set of
parameters, such as the number of close users and user proximity calculation met-
rics, to automatically determine these users, resulting in time-consuming decision
conflicts over the most appropriate selections. This paper explores an approach
that enables scientists to make informed selections for the metrics, parameters,
and setups, using a prototype user interface with preloaded tools for the scientist
to explore close users and attributes. The end users may create simulations to gain
insight into the rating prediction process. The user study verifies that the designer
anchoring effect of conflict of decision may be mitigated using the proposed app-
roach, enabling transparency for the recommendations and informed decisions
from the simulations.

Keywords: User interface · Recommender systems · Collaborative filtering ·
Rating prediction · Conflict of decision · Anchoring effects in designing
complexity · User evaluation · Usability evaluation

1 Introduction

The persistent growth of the content available inweb applications, nowadays, has created
an abundant amount of information for the users to consume. Recommender systems
(RSs) can be used to overcome this issue, by limiting and/or prioritising the information
displayed to the users, based on their perceived value [1–3]. One of the most widely
used RS techniques is Collaborative Filtering (CF), whose overall goal is to produce
accurate rating predictions for items unrated by the users [4–6]. Then, the items scoring
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the higher rating prediction values, and hence the highest probability that those items
will be desirable, are typically recommended to the users [7–9]. As expected, the closer
these rating predictions are to the real rating values, the more accurate the RS is.

CF RS designers use existing datasets to simulate output using RS models and algo-
rithms. This allows them to select the most appropriate approach and finetune it, using
low and high cut-off parameters [10–12]. In the absence of appropriate user interfaces
(UIs) and visual feedback, this workwould traditionally be done programmatically using
custom code. With the increase of the available datasets, research approaches and fine-
tuning methods, in the recent years, the task of manual parameterisation for multiple
datasets and subsets has been shown to yield suboptimal results in several situations
[13–15]. The designer is required to try out approaches and multitudes of parameters
per dataset to determine the optimal setup for the recommendation engine [16–18].

Apart from the fatigue and the human errors, it is hypothesised that anchoring effect
manifests itself on the designer decision process. Based on the above, the first research
hypothesis (RH1) is that designers experience conflict of decision between possibly
optimal setups more often than expected. A second hypothesis (RH2) is that conflict
resolution (due to task complexity) may be mitigated through visual decluttering of the
model/parameter settings and no-code comparative overview.

This paper reports on the user study of 30 participants on the design and evalua-
tion of the model/parameter decision making process for item rating prediction, using
(implementing) CF, which is one of the most prevalent algorithm categories for rating
prediction in RSs.

The rest of this paper is structured as follows: Sect. 2 summarizes related work,
while Sect. 3 overviews the necessary foundations from the CF research area. Section 4
introduces the user interface (UI) and analyses the design and functionalities, while
Sect. 5 presents the user evaluation results. Finally, Sect. 6 concludes the paper and
outlines the future work.

2 Related Work

Over the recent years RSs has been of major interest by many research works [19–
22]. Luo et al. [23] perform unconstrained non-negative latent factor analysis on high-
dimensional and sparse matrices by transferring the non-negativity constraints from
the decision parameters to the output latent factors and connect them using a depen-
dent mapping function. Afterwards, they theoretically prove that the resulting model
precisely represents the original one, by making a mapping function fulfil specific con-
ditions. Lastly, they design efficient unconstrained non-negative latent factor analysis
RSs algorithms. Qin et al. [24] generalise the classic position bias model to an attribute-
based propensity framework. Their methods allow propensity estimation across a wide
range of implicit feedback scenarios and estimate propensity scores based on offline
data. These are demonstrated by applying their framework to a Google Drive RS with
millions of users. Shin [25] examines how users perceive news recommendations issues
and the way they engage and interact with algorithm-recommended news. Furthermore,
he introduces an underlying algorithm experience model of news recommendation, inte-
grating the heuristic process of affective, behavioural, and cognitive factors. The pro-
posed algorithm affects the user’s perception and system trust, in different ways. The
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heuristic aspects transpire when the users’ subjective beliefs about accuracy and trans-
parency act as a mental shortcut. The mediating role of trust is an indication that the
algorithmic performance could be enhanced by establishing algorithmic trust between
news recommendation systems and users. The model illustrates the motivation behind
user behaviours, as well as the users’ cognitive processes of perceptual judgment. Sham-
bour [26] introduces a deep learning-based algorithm for multi-criteria RS that exploits
the nonlinear, non-trivial and hidden relations between users, regarding multi-criteria
preferences, by the employment of deep auto-encoders, which generates more accurate
recommendations. The algorithm produces accurate rating predictions, when compared
with state-of-the-art rating prediction algorithms, based on experiments on the TripAd-
visor and Yahoo! Movies multi-criteria datasets. Tian et al. [27] introduce a RS that
automatically selects a best-suited metaheuristic method without trial and error on a
given problem. This algorithm explores the intricacies of optimisation problems, by
developing a generic tree-like data structure. It trains a deep recurrent neural network
whichmakes automated algorithm recommendation, by learning to choose the bestmeta-
heuristic algorithm. This algorithm makes metaheuristic optimisation techniques acces-
sible to policy makers, industrial practitioners, as well as other stakeholders having no
prior knowledge of metaheuristic algorithms. Alhijawi and Kilani [28] introduce a novel
genetic-based RS, that operates using historical rating data and semantic information.
This genetic algorithmfinds the best list of items to the active user, by hierarchically eval-
uating the individuals using three fitness functions. The first one estimates the strength
of the semantic similarity between items, utilising the semantic information on items.
The second one estimates the satisfaction level similarity between users, while the last
one selects the best recommendation list, based on the predicted ratings.

Accuracy is an important aspect of CF RSs [10, 29, 30]. Singh et al. [31] seek to
overcome the issue of CF recommendation inaccuracy, due to the fact that the predicted
rating may tend towards the average rating value of the user. This is achieved by mitigat-
ing the issues of (i) the consideration of different value of k nearest neighbour per user
and (ii) dataset sparsity. To predict the target item, for each item, they select the nearest
neighbour, due to the high computational cost of finding k for each/different item. Yan
and Tang [32] present a model that uses Gaussian mixture to cluster items and users.
Furthermore, their model builds a new interaction matrix, by extracting new features,
which solves the rating data sparsity impact on CF algorithms. Lastly, they present a new
similarity calculationmethod that combines the Jaccard and the triangle similarities. Jain
et al. [33] present an Enhanced Multistage User-based CF algorithm that predicts the
unknown user ratings in two stages, using the active learning concept. This algorithm
predicts the anonymous ratings for each stage using the traditional User_CF algorithm.
However, it uses the Bhattacharyya Coefficient based nonlinear similarity model for the
similarity computations among users. The presented algorithm uses an extension of the
simple Enhanced multistage user-based CF algorithm, which achieves to increase the
prediction accuracy, by progressively increasing the density of the original ratingmatrix.
Margaris et al. [34] introduce the Experiencing Period Criterion rating prediction algo-
rithm which enhances the prediction accuracy of CF RSs, based on the combination of
the time period the rating to be predicted belongs to, in a certain product category, and
the users’ experiencing wait period in the same product category. The rationale behind
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this algorithm is that a user may apply different experience practices on different prod-
uct categories, that is, being reluctant to experience new products in certain categories,
while being keen to experience new products in others. Chae et al. [35] present a Rating
Augmentation framework with GAN, targeting at alleviating the data sparsity problem
in CF, which achieves to improve recommendation accuracy. Also, they identified that
the naive Rating Augmentation GAN tends to generate values biased towards high rat-
ings when applying GAN to CF for rating improvement. This issue is addressed by
introducing a refined version of RAGAN.

HCI and RS research has started to grow over the last years [36–38]. Braham et al.
[39] present a RS for selecting the most relevant design patterns in the HCI domain,
by combining ontology-based and text-based techniques and by using ontology models
and semantic similarity to retrieve appropriate HCI design patterns. They also validate
the presented RS regarding its acceptance, by evaluating the perceived accuracy and
perceived experience by users. Dominguez et al. [40] provide a perspective of the many
variables involved in the user perception of several aspects of a RS, such as relevance,
explainability, domain knowledge and trust. They study several aspects of the user expe-
rience with a RS of artistic images, from both HCI and algorithmic perspectives, and
then they conduct user studies to evaluate the levels of explainability. Margaris et al.
[41] introduce a UI for WS-BPEL designers that supports personalised recommenda-
tion and selection of business process functionalities, based on user generated criteria.
More specifically, the UI gives the WS-BPEL designers the opportunity, based on either
particular or total scores, to ask for web service recommendations and select specific
web services out of ordered lists. This allows the users to have the final selection choice,
thus overcome the automatic system selection issue that leads to adaptation failure.
Locatelli Cezar et al. [42] introduce a RS for the HCI community, recommending papers
from the Brazilian Symposium on Human Factors in Computing Systems. This RS
applies a post-processing strategy, focused on fairness to balance the users’ interests, in
order to recommend papers related to each user’s profile. Margaris et al. [43] present
a specialised UI for WS-BPEL designers, which allows personalised recommendation
and business process functionalities selection based on user generated criteria. The UI
supports user-specified restrictions, based on non-qualitative criteria, WS preselection,
as well as tuning of the number of retrieved candidate web services presented to the
WS-BPEL designer.

However, none of the above-mentioned works explores how RS scientists can be
enabled to make informed selections for the metrics, parameters, and setups of a CF
RS, for example, the number of Near Neighbours (NNs) to consider and user similarity
calculationmetrics. This work introduces aUIwith preloaded tools that enables the users
to create simulations, to gain insight into the rating prediction process and, ultimately,
increase the rating prediction accuracy, to essentially lead to higher recommendation
accuracy.

3 Prerequisites

The major concepts from the areas of CF RSs, which are used in our work, are
summarized in the following paragraphs.
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First and foremost, the ultimate goal of a CF RS is to produce accurate predictions
for the products that users have not yet evaluated [6]. Then, the RS typically recommends
the products achieving the higher prediction values, to each user, assuming that higher
prediction values usually drive to higher probability that the user will actually be inter-
ested in these products [44, 45]. Obviously, the more accurate these rating predictions
are, the more reliable the recommendations will be, and hence the more successful the
RS will be.

The first step of a typical CF RS is to find users y, who share similar tastes with the
active user x (that is, the user for whom the rating prediction is being formulated), by
comparing the real ratings that both x and y have already entered to common products p.
In order to quantify the closeness of similar tastes between users, a user similarity func-
tion must be used, such as the Pearson Correlation Coefficient and the Cosine Similarity,
the selection of which is made by the RS scientist [46, 47].

Afterwards, all users y, who are found to have (to a large extent) similar ratings with
active user x, are considered x’s candidate NNs. At this moment, the RS scientist must
again select the exact number of NNs that each user x will use for prediction formulation
[18, 48].

Lastly, in order to formulate the rating prediction of user x to product p, the existed
ratings of x’s NNs to the same product are used. This happens under the rationale that,
in the real world, humans trust people close to them (close friends, family, etc.) when
suggestions for a new experience/commodity are demanded (Fig. 1).

Fig. 1. Collaborative filtering recommender systems use near neighbours to recommend items to
users.

Based on the aforementioned steps, both the user similarity function and the exact
number of NNs directly affect the rating prediction value and, hence, accuracy, which
ultimately affects the recommendation success. As a result, the selections that the RS
scientist must take are of critical importance. Scientists spend time researching the
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optimal setups and are asked to make decisions between multiple seemingly adequate
options.Decision conflicts are time consuming and hinder productivity. This necessitated
the implementation of a UI with preloaded tools for the RS scientist to support these
selections and resolve decision conflict.

4 User Interface Design and Functionalities

The proposed UI was designed and implemented with the following functionalities:

• Selection of the similarity function between the CF users.
• Selection of the exact number of NNs that each user x will use for prediction
formulation.

• Real time simulation for selected setups and metrics and graphical representation of
accuracy

In the following subsections the above functionalities will be analysed. The UI is
depicted in Fig. 2.

Fig. 2. The UI for rating prediction analysis for collaborating filtering. (Color figure online)

On the left-hand-side, the RS scientist selects all the necessary information a CF
algorithm needs, that is, the base dataset, the test dataset, the user similarity metrics, and
the number of NNs used. On the upper part of the screen, the scientist selects the users
(all or a range of users) which the rating prediction procedure will formulate predictions
for. The UI allows the RS scientist to select the exact number of NNs that will take
part, for each user, to the rating prediction formulation. If a user has less NNs than the
selected number, all of his NNs will be used for the rating prediction formulation.

According to the vicinity between the rating prediction and the real user rating, the
user can select the limits for which the UI displays the prediction error in colours (the red
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colour indicates large prediction errors, the yellow colour indicates medium prediction
errors, and the green colour indicates small prediction errors) so that the user can easily
locate the cases to focus on.

Lastly, after the simulation is run, the rating predictions are displayed on the right-
hand side. The predictions also incorporate statistics that may help the user interpret the
results of the rating prediction procedure. These include the number of users and items
the dataset contains, the Mean Average Error and the Root Mean Square Error, as well
as the prediction coverage of the prediction process.

The UI allows the user to select from the preloaded user similarity functions, such
as the Pearson Correlation Coefficient and the Cosine Similarity. Apart from the already
implemented user similarity metrics, the user may add, edit, or delete custom metrics
(Fig. 3). These add to the flexibility of the UI, since many users prefer to utilise their
own code implementations.

Fig. 3. User-created custom similarity metrics for recommendation simulations.

At themoment, the UI supports the C programming language. However, in our future
work we are planning to extend it so that it also supports JAVA and Python programming
languages, which many RS scientists use, as well.

5 Evaluation

This section reports on the user study of 30 computer science literate participants on the
design and evaluation of the model/parameter decision making process for the rating
prediction, implementing the CF algorithm. The mean age of users was 20.7 years, 70%
male and 30% female.

For RH1, think aloud testing was applied to monitor and register decision conflicts.
Time to task completion and number of individual trials per dataset (including back-
tracking to former datasets and setups when optimal parameters were found) were also
logged. This was studied for 5 datasets, randomly selected out of the 10 trial datasets,
widely used in CF research, for the study, namely the Amazon datasets [49, 50] and the
MovieLens datasets [51].
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The RH2 investigation was contacted as follows. For the remaining half of the
datasets, the users explored the selection set of model and parameters for the RS
and simulated the applied setups using a prototype UI that implemented the following
functionalities:

• Selection of input/simulation base and test datasets.
• Selection of user vicinity metric.
• Capacity to add new, custom vicinity metrics by the user.
• Selection of number of NNs for output prediction.
• Selection of range of target users (i.e., from the datasets) which the prediction output
is computed for. This allows for insight into the algorithm and better explainability.

• Colour coded vicinity prediction to real values.

All the aforementioned metrics were also applied and actions were recorded. In
addition, a usability evaluationwas performed on the latter approach using themoderated
feedback, namely the think aloud method and user behaviour and perception metrics, as
in similar works [43, 52]. The sessions were run for up to 30 m per task for the total of
two tasks per user.

RH1was found true. The users reported between six and twenty conflicts of decision
per session (Fig. 4). The main findings were:

• Time consuming actions: the users attempted to run multiple tries on a dataset, make
deductions on the optimal setup and proceed to try the setup for the next dataset
(termed as “traditional developer” approach). This resulted in several re-tries of similar
parameters and lack of insight on the datasets that followed the ones tested, since they
would be examined anew.

• Conflict of decision: the users experiencedmost conflicts when similar positive results
were evaluated, since no insight on the performance of the setups for the other datasets
(sparse and dense) could be known.

Fig. 4. User-reported average decision conflict breakdown. The results clearly depict the activities
and types of decisions that trigger conflicts. Those conflicts are mitigated through the proposed
approach.
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RH2 was also found true. The users reported that the colour-coded vicinity predic-
tion to real values in a comparative manner was helpful for making informed decisions
regarding setups that worked well for groups of datasets (two or more). Since dataset
performance varies due to dataset content differences, the target user range selection
was helpful in grouping setup performance even better for groups of datasets. In addi-
tion, the users reported very high acceptance (behaviour metrics: task completions and
confidence; perception metrics: task completion and task difficulty).

The approach that utilised the UI prototype reduced the conflicts by 4.71 times on
average, while the maximum reduction was over 6 times on average for the five most
problematic types of decisions.

6 Conclusion

This work presented a UI with preloaded tools for RSs scientists, targeting at mitigating
the anchoring effect of conflict of decision that the scientists face. More specifically,
the scientists can make informed selections for the metrics, parameters and setups, as
well as create simulations to gain insight into the rating prediction process. A user study
verified that theRSdesigners face the anchoring effect of conflict of decision.Thismaybe
mitigated using the proposed approach, enabling transparency for the recommendations
and informed decisions from the graphical results from the recommendation process
simulations.

In our futurework,we are planning to extend the set of languages that theUI supports,
including JAVA and Python programming languages, which many RS scientists use [53,
54]. Furthermore, we are planning theUI to include graphical representation of the rating
prediction results. Last, we are planning to extend the rating prediction error metrics,
including the most used ones in RS research [10, 12, 55].
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